admin

Вода как топливо

К.х.н. О.В. Мосин
ВОДА КАК ТОПЛИВО
 
Вода – самое загадочное вещество в природе, обладающее уникальными свойствами, которые не только ещё полностью не объяснены, но далеко не все известны. Чем дольше ее изучают, тем больше находят новых аномалий и загадок в ней. Большинство из этих аномалий, обеспечивающих возможность жизни на Земле, объясняются наличием между молекулами воды водородных связей, которые много сильнее вандерваальсовских сил притяжения между молекулами других веществ, но на порядок величины слабее ионных и ковалентных связей между атомами в молекулах. К настоящему времени больше изучены лед и водяной пар, чем вода, в отношении которой у исследователей до сих пор нет даже единого мнения о ее структуре, хотя кристаллическая структура льда давно хорошо изучена.

Рис. Строение молекулы воды. Геометрическая схема (а), плоская модель (б) и пространственная электронная структура (в) мономера H2O. Два из четырех электронов внешней оболочки атома кислорода участвуют в создании ковалентных связей с атомами водорода, а два других образуют сильно вытянутые электронные орбиты, плоскость которых перпендикулярна плоскости Н-О-Н.

Удельная теплоемкость воды наибольшая среди всех веществ. Кроме того, она в 2 раза выше, чем у льда, в то время как у большинства простых веществ (например, металлов) в процессе плавления теплоемкость практически не изменяется, а у веществ из многоатомных молекул она, как правило, уменьшается при плавлении.

Рис. Водородные связи между молекулами воды

Большинство исследователей объясняют аномально высокую теплоемкость жидкой воды тем, что при плавлении льда его кристаллическая структура разрушается не сразу. В жидкой воде сохраняются водородные связи между молекулами. В ней остаются как бы обломки льда - ассоциаты из большого или меньшего числа молекул воды. Однако в отличие от льда каждый ассоциат существует недолго. Постоянно происходит разрушение одних и образование других ассоциатов. При каждом значении температуры в воде устанавливается свое динамическое равновесие в этом процессе. А при нагревании воды часть теплоты затрачивается на разрыв водородных связей в ассоциатах. При этом на разрыв каждой связи расходуется 0,26-0,5 эВ. Этим и объясняется аномально высокая теплоемкость воды по сравнению с расплавами других веществ, не образующих водородных связей. При нагревании таких расплавов энергия расходуется только на сообщение тепловых движений их атомам или молекулам. Водородные связи между молекулами воды полностью разрываются только при переходе воды в пар. На правильность такой точки зрения указывает и то обстоятельство, что удельная теплоемкость водяного пара при 100°С практически совпадает с удельной теплоемкостью льда при 0°С.

Рис. Кристаллическая структура льда: молекулы воды соединены в правильные шестиугольники

Но существует и другая точка зрения на природу аномально высокой теплоемкости воды. Профессор Г. Н. Зацепина в своей заметила, что молярная теплоемкость воды, составляющая 18 кап/(моль o град), точно равна теоретической молярной теплоемкости твердого тела с трехатомными кристаллами. А в соответствии с законом Дюлонга и Пти атомные теплоемкости всех химически простых (одноатомных) кристаллических тел при достаточно высокой температуре одинаковы и равны 6 калДмоль o град). А для трехатомных, в граммоле которых содержится 3 NA узлов кристаллической решетки, - в 3 раза больше. (Здесь NA - число Авогадро).

Рис. Кристаллическая решётка льда. Молекулы воды H2O (чёрные шарики) в её узлах расположены так, что каждая имеет четырёх „соседок“.

Отсюда следует, что вода является как бы кристаллическим телом, состоящим из трехатомных молекул Н20. Это соответствует распространенному представлению о воде как смеси кристаллоподобных ассоциатов с небольшой примесью свободных молекул H2O воды между ними, число которых растет с повышением температуры. С этой точки зрения вызывает удивление не высокая теплоемкость жидкой воды, а низкая твердого льда. Уменьшение удельной теплоемкости воды при замерзании объясняется отсутствием поперечных тепловых колебаний атомов в жесткой кристаллической решетке льда, где у каждого протона, обуславливающего водородную связь, остается только одна степень свободы для тепловых колебаний вместо трех.

Рис. Отдельный кластер воды

Теплоемкость расплавов металлов, как и большинства других жидкостей, обычно возрастает (хоть и очень медленно) с ростом давления. И лишь у воды удельная теплоемкость уменьшается с повышением давления. На этом свойстве воды хотели сыграть разработчики теплового насоса. Чтобы попытаться объяснить эту аномалию воды, вспомним, что с ростом давления температура кипения воды, как и других веществ, повышается. В результате температурный интервал существования воды в жидком состоянии расширяется с ростом давления. А при увеличении этого интервала содержание в воде ассоциатов - "льдинок" при одной и той же температуре должно становиться тем больше, чем шире интервал, т.к. это содержание определяется динамическим равновесием. И хотя ассоциаты - не совсем льдинки, но их удельная теплоемкость все же ниже, чем теплоемкость воды. Поэтому суммарная удельная теплоемкость "смеси" при высоком давлении меньше, чем при низком.

Рис. Кластеры из молекул воды образуют ассоциаты

Можно предположить, что при ускорении вращения воды в вихревом теплогенераторе в ней возрастает содержание ассоциатов, и в результате этого удельная теплоемкость воды существенно уменьшается. Она уменьшается, конечно же, не за счет повышения давления при действии центробежных сил, которое незначительно, а по каким-то другим причинам. Если это происходит, то вода без изменения ее теплосодержания оказывается на выходе теплогенератора горячее, чем была на входе в него. Это, конечно, не добавляет ей энергии, но позволяет при большем перепаде температур в теплообменнике снять с него больше тепла. А остывать после этого такая вода должна быстрее и до более низких температур, чем обычная. Вернее, не остывать, а релаксировать до обычного состояния теплового равновесия в ней льдоподобных ассоциатов и молекул воды, что должно приводить к восстановлению теплоемкости воды до обычной, а вследствие этого к падению ее температуры без теплообмена с окружающей средой.
 
Но за счет чего и как могут происходить столь большие изменения теплоемкости воды без соответствующих изменений давления? Чтобы ответить на этот вопрос, познакомимся с гипотезой кандидата геолого-минералогических наук Ю. А. Колясникова о структуре воды.
 
Он указывает, что еще первооткрыватели водородных связей Дж. Бернал и Р. Фаулер в 1932 г. сравнивали структуру жидкой воды с кристаллической структурой кварца, и утверждает, что те ассоциаты, о которых говорилось выше, - это в основном тетрамеры 4Н20, в которых четыре молекулы воды соединены в компактный тетраэдр с двенадцатью внутренними водородными связями. В результате образуется четырёхгранная пирамида - тетраэдр.
 
Водородные связи в этих тетрамерах, утверждает Колясников, могут образовывать как правотак и левовинтовую последовательности, подобно тому, как кристаллы широко распространённого кварца (Si02), тоже имеющие тетраэдрическую структуру, бывают правои лево-вращательной кристаллической форм. Поскольку каждый такой тетрамер воды имеет еще и четыре незадействованные внешние водородные связи (как у одной молекулы воды), то тетрамеры могут соединяться этими внешними связями в своего рода полимерные цепочки. А поскольку внешних связей всего четыре, а внутренних - в 3 раза больше, то это позволяет тяжелым и прочным тетрамерам в жидкой воде изгибать, поворачивать и даже надламывать эти ослабленные тепловыми колебаниями внешние водородные связи. Это и обуславливает текучесть воды.
 
Такую структуру вода, по мнению Колясникова, имеет только в жидком состоянии и, возможно, частично в парообразном. А вот во льду, кристаллическая структура, которого хорошо изучена, тетрагидроли соединены между собой негибкими равнопрочными прямыми водородными связями в ажурный каркас с большими пустотами в нем, что делает плотность льда меньше плотности воды.
 
Когда же лед тает, часть водородных связей в нем ослабевает и изгибается, что ведет к перестройке структуры в вышеописанные тетрамеры и делает жидкую воду более плотной, чем лед. При 4°С наступает состояние, когда все водородные связи между тетрамерами максимально изогнуты, чем и обуславливается максимум плотности воды при этой температуре. Дальше связям гнуться некуда.
 
При температуре выше 4°С, утверждает Колясников, начинается разрывание отдельных связей между тетрамерами, и при 36-37°С оказывается разорвана половина внешних водородных связей. Это и определяет минимум на кривой зависимости удельной теплоемкости воды от температуры. При температуре же 70°С разорваны уже почти все межтетрамерные связи, и наряду со свободными тетрамерами в воде остаются только короткие обрывки "полимерных" цепочек из них. Наконец при кипении воды происходит окончательный разрыв теперь уже одиночных тетрамеров на отдельные молекулы Н20. И то обстоятельство, что удельная теплота испарения воды ровно в 3 раза больше суммы удельных теплот плавления льда и последующего нагрева воды до 100°С, является подтверждением предположения Колясникова о том. что число внутренних связей в тетрамере в 3 раза больше числа внешних.
 
Колясников считает, что такая тетраэдрально-винтовая структура воды обусловлена ее древней реологической связью с кварцем и другими кремнекислородными минералами, преобладающими в земной коре, из недр которой когда-то появилась вода на Земле. Как маленький кристаллик соли заставляет окружающий его раствор кристаллизоваться в подобные ему кристаллы, а не в другие, так кварц заставил молекулы воды выстраиваться в тетраэдрические структуры, которые, энергетически наиболее выгодны. А в нашу эпоху в земной атмосфере водяные пары, конденсируясь в капли, образуют такую структуру потому, что в атмосфере всегда присутствуют мельчайшие капельки аэрозольной воды, уже имеющей эту структуру. Они и являются центрами конденсации водяных паров в атмосфере.

Рис. Элементарный правильный кремне-кислородный тетраэдр SiO44-.

Рис. Элементарные кремнекислородные единицы-ортогруппы SiO44- в структуре Mg-пироксена энстатите (а) и диортогруппы Si2 O76в Са-пироксеноиде волластоните (б).

Рис. Простейшие типы островных кремнекислородных анионных группировок: а-SiO4, б-Si2O7, в-Si3O9, г-Si4О12, д-Si6O18.

Рис. Важнейшие типы кремнекислородных цепочечных анионных группировок (по Белову): а-метагерманатная, б - пироксеновая, в - батиситовая, г-волластонитовая, д-власовитовая, е-мелилитовая, ж-родонитовая, з-пироксмангитовая, и-метафосфатная, к-фторобериллатная, л - барилитовая.

Рис. Конденсация пироксеновых кремнекислородных анионов в ленточные двухрядные амфиболовые (а), трехрядные амфиболоподобные (б), слоистые тальковые и близкие им анионы (в).

Рис. Важнейшие типы ленточных кремнекислородных группировок (по Белову): а - силлиманитовая, амфиболовая, ксонотлитовая; б-эпидидимитовая; в-ортоклазовая; г-нарсарсукитовая; д-фенакитовая призматическая; е-эвклазовая инкрустированная.

Рис. Фрагмент (элементарный пакет) слоистой кристаллической структуры мусковита KAl2(AlSi3O10XOH)2, иллюстрирующий переслаивание алюмокремне-кислородных сеток с полиэдрическими слоями крупных катионов алюминия и калия.

В гипотезе Колясникова интересно еще и то, что из нее следует равновероятность существования право - и левовинтовой воды. Но биологами давно подмечено, что в биологических тканях и структурах наблюдаются только либо лево -, либо правовинтовые образования. Пример тому - белковые молекулы, построенные только из лево-винтовых аминокислот и закрученные только по левовинтовой спирали. А вот сахара в живой природе - все только правовинтовые. Никто пока не смог объяснить, почему в живой природе обнаруживается такое предпочтение к левому в одних случаях и к правому - в других. Ведь в неживой природе с равной вероятностью встречаются как право-, так и левовинтовые молекулы.
 
Растворы сахаров в воде ведут себя очень интересно. Их концентрацию определяют, измеряя угол поворота плоскости поляризации света при прохождении его через раствор. Она поворачивается потому, что молекулы сахара, как и большинство молекул других органических соединений, представляют собой в пространстве спиральные или квазиспиральные структуры, группы атомов в которых расположены по вершинам тетраэдра. В сахаре, получаемом из свеклы или тростника, молекулы закручены почему-то только по правовинтовой спирали. Потому-то плоскость поляризации света, проходящего через раствор такого сахара, поворачивается вправо, и угол поворота зависит от концентрации сахара в растворе. Этот метод, открытый французским физиком Ж. Био еще в 1815 г., оказался совершенно непригодным для измерения концентрации растворов искусственного сахара, полученного синтетическим путем, ибо в том правои левовинтовые молекулы содержатся в равной мере.
 
Как еще в 1848 г. доказал ставший потом знаменитым французский бактериолог Луи Пастер, кристаллы этих двух типов в искусственном сахаре можно отличить друг от друга под микроскопом и разделить, осторожно отбирая их пинцетом. Другой эксперимент с сахаром заключался в том, что его раствором кормили бактерии. Сахар, полученный из свеклы, бактерии съедали полностью. А при питании искусственным сахаром они съедали только половинку. Раствор оставшейся половины поворачивал плоскость поляризации света уже в левом направлении. Бактерии не потребляли левовинтовой сахар! Но как они различают правовинтовой от левовинтового? Ответа у биологов до сих пор нет, как нет и ответа на вопрос, почему живым структурам присуща только определенная спиральность.
 
Гипотеза о структуре воды подсказывает, что те обрывки цепочек из тетрамеров, которые всегда имеются в жидкой воде, при ее быстром и неравномерном в пространстве течении должны выстраиваться и вытягиваться вдоль линий тока воды, как вытягиваются водоросли в реке вдоль ее течения. То есть их хаотичное расположение сменяется на упорядоченное. При этом вероятность того, что концы цепочек тетрамеров случайно столкнутся друг с другом и соединятся свободными водородными связями, возрастает втрое по сравнению с неупорядоченным расположением. Это следует из законов геометрии. А каждая вновь образованная водородная связь - это 0,26-0,5 эВ энергии, выделяющейся из воды.
 
Надо сказать, что вода - не единственное вещество, способное образовывать межмолекулярные водородные связи. Они характерны и для многих органических соединений. А потому описанный процесс полимеризации в вихревом потоке должен происходить и при использовании вместо воды растворов органических соединений.
 
Это указывает на то, что вода - не единственная жидкость, которая может успешно работать в вихревых теплогенераторах. И действительно, эксперименты показали, что и масла, и дизельное топливо тоже пригодны для использования в качестве рабочего тела вихревого теплогенератора. Но вода и дешевле, и доступнее, и безопаснее в пожарном отношении. Да и результаты, полученные при работе с ней, пока много лучше, чем при работе с другими жидкостями.
 
Итак, теория движения требует, чтобы вода, приводимая во вращение в вихре, изыскала возможность выделить в виде излучений часть своей внутренней энергии, а эта вода, образуя в вихревом потоке новые межмолекулярные связи, сама ищет возможность выделить часть своей внутренней энергии, чтобы появилась необходимая отрицательная энергия связи!

См.продолжение в следующей статье сайта.