Золото
ЗОЛОТАЯ ВОДА
Золото (лат. Aurum), Au – это химический элемент I группы периодической системы Менделеева с атомным номером 79 и атомной массой 196,9665.
В природе золото – это тяжелый металл желтого цвета. Состоит только из одного устойчивого изотопа 197Аu.
Золото было первым металлом, известным человеку. Изделия из золота найдены в культурных слоях эпохи неолита (5-4-е тысячелетия до н. э.). В древних государствах - Египте, Месопотамии, Индии, Китае добыча золота, изготовление украшений и других предметов из него существовали за 3-2 тысячелетия до н. э.
Золото часто упоминается в Библии, "Илиаде", "Одиссее" и других памятниках древней литературы. Алхимики называли золото "царем металлов" и обозначали его символом Солнца. Открытие способов превращения неблагородных металлов в золото было главной целью алхимии.
Распространение золота в природе
Среднее содержание золота в земной коре составляет 4,3·10-7% по массе. В магме и магматических породах золото рассеяно, но из горячих вод в земной коре образуются гидротермальные месторождения золота, имеющие важное промышленное значение (кварцевые золотоносные жилы и др.). В природе золото в основном находится в свободном (самородном) состоянии и лишь очень редко образует минералы с селеном, теллуром, сурьмой, висмутом. Пирит и другие сульфиды часто содержат примесь золота, которое извлекают при переработке медных, полиметаллических и других руд.
В биосфере золото мигрирует в комплексе с органическими соединениями и механическим путем в речных взвесях. Один литр морской и речной воды содержит около 4·10-9 г золота. На участках золоторудных месторождений подземные воды содержат приблизительно 10-6г/л золота. Оно мигрирует в почвах и оттуда попадает в растения, которые концентрируют золото - хвощи, кукуруза. Разрушение эндогенных месторождений золота приводит к образованию россыпей золота, имеющих промышленное значение. Золото добывается в 41 стране; его основные запасы сосредоточены в России, ЮАР и Канаде.
Физические свойства золота
Золото - мягкий, очень пластичный, тягучий металл (может быть проковано в листки толщиной до 8·10-5 мм, протянуто в проволоку, 2 км которой весят 1 г), хорошо проводит тепло и электричество, весьма стойко против химического воздействий. Кристаллическая решетка Золото гранецентрированная кубическая, а = 4,704 Å. Атомный радиус 1,44 Å, ионный радиус Au1+ 1,37 Å. Плотность (при 20°С) 19,32 г/см3, tпл 1064,43 °С, tкип 2947 °С; термический коэффициент линейного расширения 14,2·10-6 (0-100 °С); удельная теплопроводность 311,48 вт/(м·K) [0,744 кал/(см·сек·°С)]; удельная теплоемкость 132,3 дж/(кг·К) [0,0316 кал/(г·°С)] (при 0°-100 °С); удельное электросопротивление 2,25·10-8ом·м (2,25·10-6 ом·см) (при 20 °С); температурный коэффициент электросопротивления 0,00396 (0-100 °С). Твердость золота по Бринеллю 180 Мн/м2 (18 кгс/мм2) (для Золота отожженного около 400 °С).
Химические свойства золота
Золото — самый инертный металл, стоящий в ряду напряжений правее всех других металлов, при нормальных условиях оно не реагирует с большинством кислот и не образует оксидов, благодаря чему было отнесено к благородным металлам, в отличие от металлов обычных, легко разрушающихся под действием окружающей среды. Затем была открыта способность царской водки растворять золото, что поколебало уверенность в его инертности.
Из чистых кислот золото растворяется только в горячей концентрированной селеновой кислоте:
2Au + 6H2SeO4 = Au2(SeO4)3 + 3H2SeO3 + 3H2O
Золото сравнительно легко реагирует с кислородом и другими окислителями при участии комплексобразователей. Так, в водных растворах цианидов при доступе кислорода золото растворяется, образуя цианоаураты:
4Au + 8CN− + 2H2O + O2 → 4[Au(CN)2]− + 4 OH−
В случае реакции с хлором возможность комплексообразования также значительно облегчает ход реакции: если с сухим хлором золото реагирует при ~200 °С с образованием хлорида золота(III), то в водном растворе (царская водка) золото растворяется с образованием хлораурат-иона уже при комнатной температуре:
2Au + 3Cl2 + 2Cl− → 2[AuCl4]−
Золото легко реагирует с жидким бромом и его растворами в воде и органических растворителях, давая трибромид AuBr3.
Со фтором золото реагирует в интервале температур 300−400°C, при более низких реакция не идёт, а при более высоких фториды золота разлагаются.
Золото также растворяется во ртути, фактически образуя легкоплавкий сплав (амальгаму).
В концентрированной серной кислоте золото растворяется в присутствии окислителей: иодной кислоты, азотной кислоты, диоксида марганца. В водных растворах цианидов при доступе кислорода золото растворяется с образованием очень прочных дицианоауратов:
4Au + 8NaCN + 2H2O + O2 → 4Na[Au(CN)2] + 4NaOH
Эта реакция лежит в основе важного промышленного способа извлечения золота из руд.
Науке известны и органические соединения золота. Так, действием хлорида золота(III) на ароматические соединения получают соединения, устойчивые к воде, кислороду и кислотам, например: AuCl3 + C6H6 C6H5AuCl2 + HCl. Органические производные золота (I) стабильны только в присутствии координационно связанных с золотом лигандов, например, триэтилфосфина: CH3Au·P(C2H5)3.
Получение золота
Из россыпных месторождений золото можно извлечь методом флотации (осаждение), основанным на большой разности плотностей золота и пустой породы. Золото почти в 20 раз тяжелее воды и примерно в 8 раз тяжелее песка, поэтому крупинки золота можно струей воды отделить от песка или от измельченной пустой породы. Старинный способ промывки с помощью бараньих шкур, на которых отлагались золотые крупинки, отражен в древнегреческом мифе о золотом руне. Самородки и россыпи золота часто находили по течению рек, которые тысячелетиями размывали золотоносные породы. В древние времена золото добывали только из россыпей. И сейчас там, где они остались, золотоносный песок вычерпывают со дна рек и озер и обогащают на драгах – огромных сооружениях размером с многоэтажный дом, способных перерабатывать миллионы тонн золотоносной породы в год.
Однако, этот способ, применявшийся уже в глубокой древности, сопряжен с большими потерями. Он уступил место амальгамации (известной уже в 1 веке до н. э. и применявшейся в Америке начиная с XVI века) и цианированию, получившему широкое распространение в Америке, Африке и Австралии в 1890-х годах.
Старый (так называемый ртутный) способ извлечения золота из руды – амальгамирование основан на том, что ртуть хорошо смачивает золото – как вода смачивает стекло. Тонко размолотую золотоносную породу встряхивали в бочках, на дне которых находилась ртуть. При этом частички золота прилипали к жидкому металлу, смачиваясь ртутью со всех сторон. Поскольку при этом цвет золотых частиц исчезает, может показаться, что золото «растворилось». Затем ртуть отделяли от пустой породы и сильно нагревали. Летучая ртуть отгонялась, а золото оставалось в неизменном виде. Недостатки этого метода – высокая ядовитость ртути и неполнота выделения золота: самые мелкие его частицы смачиваются ртутью плохо.
В конце XIXначале XX века основным источником золота становятся коренные месторождения. Золотоносную породу подвергают дроблению и выщелачиванию цианидом натрия, при котором даже самые мелкие крупинки переводят в водорастворимые цианистые соединения. Затем из водного раствора золото извлекают с помощью цинкового порошка: 2Na[Au(CN)2] + Zn → Na[Zn(CN)4] + 2Au. Выщелачивание позволяет извлекать остатки золота из отвалов заброшенных разработок, фактически превращая их в новое месторождение. Перспективен и метод подземного выщелачивания: раствор цианида закачивают в скважины, он по трещинам проникает внутрь породы, где растворяет золото, после чего раствор выкачивают через другие скважины.
Другой способ очистки золота электролизом, был предложен Э. Вольвиллом в 1896 году. Аноды, отлитые из нечистого золото, подвешивают в ванне, содержащей солянокислый раствор АuCl3, катодом служит лист чистого золота. При этом при прохождении тока примеси выпадают в осадок (анодный ил, шлам), а на катоде отлагается золото чистотой не менее 99,99%.