УСТАНОВКА ДЛЯ КОНДЕНСАЦИИ ПРЕСНОЙ ВОДЫ ИЗ АТМОСФЕРНОГО ВОЗДУХА
Имя изобретателя: Алексеев Вячеслав Викторович; Алексеев Илья Вячеславович; Рустамов Нариман Ахмед оглы
Имя патентообладателя: Алексеев Вячеслав Викторович; Алексеев Илья Вячеславович; Рустамов Нариман Ахмед оглы
Адрес для переписки: 117593, Москва, Литовский б-р, д.5/10, кв.608, Рустамову Н.А.
Дата начала действия патента: 1998.11.23
Изобретение относится, в частности, к установкам, использующим возобновляемые источники энергии.
Технической задачей изобретения является увеличением эффективности работы конденсирующей поверхности и обеспечение автономности при работе установки для конденсации влаги из атмосферного воздуха. Установка содержит солнечные батареи, холодильную систему, водосборник, воздуховод и вентиляционную систему, а также введенная в нее в качестве конденсатора иерархическая капиллярная структура с уменьшающимся радиусом капилляров в каждом последующем вертикально расположенном слое, образующая большую конденсирующую поверхность с хорошей проницаемостью для воздушных потоков.
ОПИСАНИЕ ИЗОБРЕТЕНИЯ
Изобретение относится к установкам для получения пресной воды из атмосферного воздуха, в частности, к установкам, использующим возобновляемые источники энергии.
Известна установка для получения пресной воды из влажного воздуха, в работе которой используется солнечная энергия /1/. Она содержит солнечные батареи, холодильный агрегат, водосборник и воздуховод, в котором размещены испаритель холодильного агрегата и вентилятор.
Установка работает следующим образом. За счет электроэнергии, получаемой от солнечных батарей, холодильный агрегат производит холод, который выделяется на теплообменнике-испарителе. Влажный воздух с помощью вентилятора продувается через воздуховод, в котором расположен испаритель. В результате контакта с поверхностью теплообменника-испарителя воздух охлаждается, содержащийся в нем пар становится насыщенным, частично конденсируется на поверхности теплообменника и стекает в водосборник.
Недостатком данной установки являются большие энергозатраты и низкая производительность.
Наиболее близкой к изобретению является установка, в которой осуществляется аккумуляция холода для его использования в ночное время /2/. Она содержит солнечные батареи, холодильный агрегат, аккумулятор холода, выполненный в виде наполненной водой термоизолированной емкости, соединенный через гидронасос и вентиль с холодильным агрегатом и теплообменником-конденсатором, расположенном в воздуховоде, в котором также находится каплеуловитель и вентилятор. Под отверстием в воздуховоде находится водосборник.
Установка работает следующим образом. В светлое время суток электроэнергия от солнечных батарей поступает на холодильный агрегат, который вырабатывает холод. С помощью вентиля холодильный агрегат подключается к термоизолированной емкости. Находящаяся в ней жидкость с помощью гидронасоса прокачивается через холодильный агрегат и охлаждается, в результате в термоизолированной емкости аккумулируется холод. Затем термоизолированная емкость с помощью вентиля отключается от холодильного агрегата и подключается к теплообменнику-конденсатору
Когда влажность воздуха достигает величины, близкой к 100%, включается гидронасос и вентилятор. С их помощью холодная жидкость и влажный воздух пропускаются через конденсатор. Содержащийся в воздухе водяной пар конденсируется на его поверхности, а находящиеся в нем капли улавливаются каплеуловителем и захваченная влага стекает в водосборник.
Недостатком данной установки является низкая эффективность работы конденсирующей поверхности при относительной влажности менее 100%, необходимость расходования энергии и отсутствие автономности при работе.
Задачей изобретения является увеличение эффективности работы конденсирующей поверхности и обеспечение автономности при работе установки для конденсации влаги из атмосферного воздуха.
Технический результат достигается тем, что в установку для конденсации пресной воды из атмосферного воздуха, содержащую солнечные батареи, холодильную систему, водосборник, воздуховод и вентиляционную систему, введена в качестве конденсатора иерархическая капиллярная структура с уменьшающимся радиусом капилляров в каждом последующем вертикально расположенном слое, образующая большую конденсирующую поверхность с хорошей проницаемостью для воздушных потоков.
Положительный эффект достигается за счет того, что при работе установки в менисках в капиллярах с радиусом менее 10-5 см происходит конденсация влаги при относительных влажностях менее 100%.
Из таблицы видно, что давление насыщенного пара над мениском в 10 раз меньше давления насыщенного пара над плоской поверхностью, если радиус капилляра 0,5·10-3 мкм. Для радиуса капилляра 0,1 мкм давление насыщенного пара практически не отличается от давления пара над плоской поверхностью с точностью до 1%.
Поэтому капилляры с радиусом больше 0,1 мкм можно считать макрокапиллярами, а капилляры, у которого радиус меньше этой величины, микрокапиллярами. Внутренняя поверхность микрокапилляров очень велика по сравнению с поверхностью макрокапилляров. Так для активированного угля поверхность микропор с радиусом 10-7 см равна от 900 до 1500 м2/г, а поверхность макропор с радиусом 10-4 см равна от 0,35 до 1,7 м2/г.
В капиллярах происходит капиллярная конденсация пара. Поместим капилляр, стенки которого смачиваются водой, во влажный воздух с парциальным давлением пара 16,6 мм, пусть температура воздуха 20oC, для которого давление насыщенного пара равно 17,54 мм. Относительная влажность при этом будет равна 94% и чтобы достигнуть точки росы надо понизить температуру влажного воздуха примерно на 1oC. При 20oC плотность воздуха равна 1,2 кг/м3, а теплоемкость 0,24 ккал/(кг градус). Следовательно, для понижения температуры 1 м3воздуха необходимо отобрать у него 288 ккал, что равно половине энергии, выделяющейся при конденсации 1 г водяного пара. Использование же капиллярной конденсации, которая происходит при относительной влажности менее 100%, существенно понижает энергетические расходы холодильной системы. Стенки капилляра будут адсорбировать пар и покроются слоем влаги. На дне капилляра слой адсорбированного пара даст вогнутый мениск. Если радиус капилляра порядка 10-6 см, то давление насыщенного пара для мениска такого радиуса равно 15,9 мм. По таблице видно, что для такого радиуса пар будет насыщенным при 90% от величины насыщенного пара над плоской поверхностью. Следовательно, пар в окружающем пространстве с давлением 16,6 мм будет уже пересыщенным паром для мениска жидкости капилляра и произойдет конденсация пара, капилляр будет постепенно заполняться водой.
В системе, где структура, содержащая тонкие капилляры, соединена с проводящим капилляром, высота которого несколько меньше капиллярного подъема находящейся в нем жидкости, а проводящий капилляр опирается на слой воды в водосборнике, как это показано на фиг. 1, влага, сконденсированная в тонких капиллярах будет стекать в водосборник. Когда проводящий капилляр имеет радиус 0,05 мм, то высота капиллярного подъема воды составляет примерно 2,96 см. Если же радиус капилляра равен 0,025 мм, то высота подъема будет равна 5,92 см. Таким образом, если прокачивать воздух через вертикальную структуру, опирающуюся на водосборник, то она будет конденсировать влагу. Отметим, что может быть несколько вертикальных конденсирующих стенок.
На фиг. 2 приведена схема установки для конденсации влаги из атмосферного воздуха. Она содержит водосборник 1, капиллярную конденсационную систему 2, холодильную систему 3, вентиляционную систему 4 и воздуховод 5. При этом в вертикальной капиллярной структуре проводящие капилляры для каждого следующего слоя конденсирующих капилляров имеют все более меньший радиус. Тепло конденсации от конденсирующих капилляров отводиться как вентиляционной системой, так и с помощью холодильной системы. Вентиляционный эффект достигается за счет конвекции, возникающей в результате выделения скрытого тепла при конденсации и за счет принудительного движения воздуха возбуждаемого вентилятором, питание которого осуществляется от аккумулятора, заряжающегося от солнечных батарей, или за счет конвекции, индуцируемой аккумулятором солнечного тепла, соединенным с соответствующим коллектором. Холодильная система 2 выполнена из твердого материала, состоит из нескольких уровней, расположенных внутри разветвленной капиллярной системы 3, образующей конденсационную систему с хорошей проницаемостью для воздушных потоков.
Конденсирующая система 3 представляет собой иерархическую капиллярную систему с уменьшающимся радиусом капилляров в каждом последующем вертикально расположенном слое, причем каждый слой соединен с водосборником толстым нижнем капилляром, имеющим высоту чуть ниже высоты капиллярного поднятия воды за счет сил поверхностного натяжения, дальнейшее поднятие осуществляется в верхних капиллярах с радиусом менее 10-5 см, где образуются мениски, на которых идет конденсация влаги при относительных влажностях менее 100%. Охлаждение системы происходит за счет холодильной системы.
Вытяжная труба в 4 может быть выполнена в виде легкой конструкции, например каркаса, обтянутого пленкой.
Установка работает следующем образом. Ночью температура поверхности земли и воздуха начинает уменьшаться за счет радиационного излучения. За счет накопленной солнечной энергии в вытяжной трубе создается поток теплого воздуха. В результате создается разность давлений и атмосферный воздух поступает в нижнюю часть конденсирующей системы, поднимается вверх и выходит в вытяжную трубу. Конденсация влаги, содержащейся в охлажденном воздухе происходит на капиллярах при относительной влажности менее 100%
Процесс конденсации водяного пара продолжается также и днем, только вначале теплый атмосферный воздух охлаждается холодильной системой. Днем образованию воздушных потоков через систему способствует также его нагрев солнечными лучами, что создает внутри его градиент температуры.
ЛИТЕРАТУРА
1. Заявка ФРГ N 3313711, кл. E 03 B 3/28.
2. Патент России N 2056479, кл. C1 (пртотип).
ФОРМУЛА ИЗОБРЕТЕНИЯ
Установка для конденсации пресной воды из атмосферного воздуха, содержащая солнечные батареи, холодильную систему, водосборник, воздуховод и вентиляционную систему, отличающаяся тем, что в нее введена в качестве конденсатора иерархическая капиллярная структура с уменьшающимся радиусом капилляров в каждом последующем вертикально расположенном слое, образующая большую конденсирующую поверхность с хорошей проницаемостью для воздушных потоков.
Дата публикации 21.11.2006гг
Источник
www.ntpo.com/patents_water/water_2/water_3.shtml