О теории относительности
И сегодня работа в области теории относительности требует иногда долгих и кропотливых математических преобразований вручную (без электронной машины), являющихся часто нудными и однообразными из-за огромного количества членов в формулах. Но без чернового труда не обойтись. Я часто предлагаю студентам (а иногда аспирантам и научным работникам), покоренным фантастичностью общей теории относительности, познакомившимся с ней по учебникам и желающим в ней работать, конкретно вычислить своими руками хоть одну сравнительно простую величину в задачах этой теории. Не все после многодневных (а иногда и гораздо более долгих!) вычислений столь же горячо продолжают стремиться посвятить свою жизнь этой науке.
В оправдание такой “жесткой” проверки на любовь скажу, что я сам прошел через подобное испытание. (Кстати, согласно преданиям в былые времена и обычная человеческая любовь подвергалась испытаниям подвигами.) В студенческие годы моим учителем по теории относительности был известный специалист и очень скромный человек А. Зельманов. Для моей дипломной работы он поставил передо мной задачу, связанную с удивительным свойством поля тяготения — возможностью “уничтожить” его в любом месте по своему желанию. “Как? — воскликнет читатель. — Ведь в учебниках сказано, что от тяготения в принципе нельзя загородиться никакими экранами, что выдуманное фантастом Г. Уэллсом вещество “кэй-ворит” является чистейшим вымыслом, невозможным в реальности!”
Все это так, и если оставаться неподвижным, например, относительно Земли, то силу ее тяготения не уничтожить. Но действие этой силы можно полностью устранить, начав свободно падать! Тогда наступает невесомость. В кабине космического корабля с выключенными двигателями, летящего по орбите вокруг Земли, нет силы тяжести, вещи и сами космонавты плавают в кабине, не ощущая никакой тяжести. Мы все много раз видели это на экранах телевизоров в репортажах с орбиты. Заметим, что никакое другое поле, кроме поля тяготения, не допускает подобного простого “уничтожения”. Электромагнитное поле, например, так убрать нельзя.
Со свойством “устранимости” тяготения связана сложнейшая проблема теории — проблема энергии поля тяготения. Она, по мнению некоторых физиков, не решена и до сих пор. Формулы теории позволяют вычислить для какой-либо массы полную энергию ее гравитационного поля во всем пространстве. Но нельзя указать, где конкретно находится эта энергия, сколько ее в том или ином месте пространства. Как говорят физики, нет понятия плотности гравитационной энергии в точках пространства.
Мне в моей дипломной работе предстояло показать прямым вычислением, что известные в то время математические выражения для плотности энергии гравитационного поля бессмысленны даже для наблюдателей, не испытывающих свободного падения, скажем, для наблюдателей, стоящих на Земле и явно чувствующих силу, с которой планета их притягивает. Математические выражения, с которыми мне предстояло работать, были еще более громоздкими, чем уравнения поля тяготения, о которых мы говорили выше. Я даже просил А. Зельманова дать мне еще кого-нибудь в помощники, который делал бы эти же вычисления параллельно, ведь я мог ошибиться. А. Зельманов вполне определенно отказал мне. “Вы должны это сделать сами”, — был его ответ.
Когда все уже было позади, я увидел, что потратил на эту рутинную работу несколько сотен часов. Почти все вычислении пришлось провести дважды, а некоторые и больше. Ко дню защиты диплома темп работы стремительно возрастал, подобно скорости свободно падающего тела в полэ тяготения. Правда, надо заметить, что суть работы состояла не только в прямых вычислениях. По ходу дела надо было еще думать и решать принципиальные вопросы.
Но вернемся к работе К. Шварцшильда. Он с помощью изящного математического анализа решил задачу для сферического тела и переслал ее А. Эйнштейну для передачи Берлинской академии. Решение поразило А. Эйнштейна, так как сам он к тому времени получил лишь приближенное решение, справедливое только в слабом поле тяготения. Решение же К. Шварцшильда было точным, то есть справедливым и для сколь угодно сильного поля тяготения вокруг сферической массы; в этом было его важное значение. Но ни А. Эйнштейн, ни сам К. Шварцшильд тогда еще не знали, что в этом решении содержится нечто гораздо большее. В нем, как выяснилось позже, содержится описание черной дыры.
А теперь продолжим разговор о второй космической скорости. Какую скорость согласно уравнениям Эйнштейна надо придать ракете, стартующей с поверхности планеты, чтобы она, поборов силы тяготения, улетела в космос?
Ответ оказался чрезвычайно прост. Здесь справедлива та же формула, что и в ньютоновской теории. Значит, вывод П. Лапласа о невозможности для света уйти от компактной тяготеющей массы подтвердился теорией тяготения Эйнштейна, согласно которой вторая космическая скорость должна быть равна скорости света как раз на гравитационном радиусе.
Сфера с радиусом, равным гравитационному, получила название сферы Шварцшильда.
Новиков И.Д.