Астрономия древних греков
Обратимся астрономии древних греков. Первые работы греческих астрономов относятся к построению календаря. Около 434 г. астроном Метон ввел 19-летний цикл, получивший впоследствии название метонова цикла. Этот период содержит 6940 суток и почти в точности равен длительности 235 лунных (синодических) месяцев. В самом деле, поделив 6940 на 235, получаем среднюю длительность синодического месяца:
В цикле Метона 29, 531914 суток.
По современным данным 29, 530588 суток.
Иначе говоря, точность метонова лунного месяца составляла 2 минуты.
Средняя длительность года в метоновом цикле составляла 365, 26316 суток, что на 19 минут длиннее введенного четырьмя столетиями позднее юлианского года (365, 25 суток) и на 30 мин - действительной длительности тропического года в эпоху Метона (365, 2425 суток).
Нужно сказать, что календарная система в Вавилоне и Греции была в ту эпоху очень сложной. Согласовать солнечный тропический год с лунным синодическим месяцем было очень трудно из-за их несоизмеримости. Лунный год, состоявший из 12 лунных месяцев, содержал (с округлением до целых суток) 354 суток, что было на 11 с лишним суток меньше тропического года. Поэтому в некоторые годы (примерно раз в три года) добавляли тринадцатый месяц, так что такой год содержал уже 384 суток.
Метонов цикл значительно облегчал работу по составлению календаря. Он давал простое соотношение между годом и лунным месяцем. Кроме того, по номеру года в цикле можно было легко узнать все даты в этом году, поскольку по истечении цикла они повторялись.
Цикл Метона использовался еще в Вавилоне, так что неизвестно, заимствовал ли его Метон у вавилонян или определил независимо. Этот цикл использовался в течение нескольких столетий.
Столетие спустя после Метона астроном Каллипп улучшил метонов цикл, объединив 4 цикла по 19 лет и отняв от итога одни сутки. В каллипповом цикле 940 месяцев, равных в сумме 27759 суткам. Отсюда получаем длину тропического года 365, 25 суток (как в юлианском календаре) и длину синодического месяца 29, 530851 суток, что всего лишь на 23 с продолжительнее истинного.
Циклы Метона и Каллиппа впоследствии критически обсуждались Гиппархом, из сочинения которого «О длительности года» сведения о них позаимствовал Птолемей, в свою очередь подвергший этот вопрос критическому анализу.
Каллипп был учеником и помощником виднейшего греческого философа IV в. до н. э. Аристотеля, автора геоцентрической системы мира, где в центре мира находится Земля, а орбиты Солнца, Луны и планет изображаются кругами. Аристотель не был математиком и не ставил себе задачей создание теории планетных движений. Он резко разделял философию на теоретическую и практическую части, отдавая преимущество первой, так называемой «чистой» философии. Быть может, именно поэтому Птолемей, астроном и математик, позаимствовавший у Аристотеля геоцентрическое мировоззрение и круговую форму орбит, упоминает его в «Альмагесте» только однажды, в самом начале своего труда, там, где речь идет о классификации наук.
Много столетий спустя, католическая церковь, отметавшая все языческое, сделала своеобразное исключение для геоцентризма Аристотеля и системы мира Птолемея - они были официально признаны католической церковью как правильные представления о строении мира, не противоречащие Священному писанию.
Крупнейшим после Аристотеля греческим ученым IV в. до н. э. был Евклид, чьи труды стали основой не только греческой, но и мировой математики. Его «Начала» содержат основные постулаты (аксиомы) и теоремы, на которых в значительной мере базируется вся элементарная математика вплоть до настоящего времени. Птолемей в своих математических построениях постоянно использует «Начала» Евклида, хотя не всегда на них ссылается. По мнению Дж. Тумера, автора и редактора новейшего английского перевода «Альмагеста», среди сочинений древнегреческих авторов «Альмагест» занимает второе место после «Начал» Евклида.