Выгорание ядерного топлива звезды
Наибольший интерес для учёных представляет процесс, в ходе которого шаг за шагом осуществляется постепенное выгорание ядерного топлива. Для расчёта этого процесса используется информация, полученная из лабораторных опытов; огромную роль при этом играют современные быстродействующие вычислительные машины. Хойл и Фаулер смоделировали с помощью ЭВМ процесс энерговыделения в звезде и проследили её ход. В качестве примера они взяли звезду, масса которой втрое превосходит солнечную, то есть звезду, находящуюся далеко за пределом Чандрасекара. Звезда с такой массой должна иметь светимость, в 60 раз превышающую светимость Солнца, и время жизни около 600 млн. лет.
Мы уже знаем, что в ходе обычных термоядерных реакций, протекающих в недрах звезды почти в течение всей её жизни, водород превращается в гелий. После того как значительная часть вещества звезды превратится в гелий, температура в её центре возрастает. При увеличении температуры примерно до 200 млн. К ядерным горючим становится гелий, который затем превращается в кислород и неон. Таким образом, гелиевое ядро начинает порождать более тяжёлое ядро, состоящее из двух этих химических элементов.
Теперь звезда становится многослойной энергопроводящей системой. В тонкой оболочке, по одну сторону от которой находится водород, а по другую гелий, происходит превращение водорода в гелий; эта реакция идёт с выделением энергии. Поэтому, пока такая реакция осуществляется, температура ядра звезды неуклонно растёт. Сжатие звезды ведёт к уплотнению её ядра и росту температуры в центре до 200-300 млн. К. Но даже при столь высоких температурах кислород и неон вполне устойчивы и не вступают в ядерные реакции.
Однако через некоторое время ядро становится ещё плотнее, температура удваивается, теперь она уже равняется 600 млн. К. И тогда ядерным топливом становится неон, который в ходе реакций превращается а магний и кремний. Образование магния сопровождается выходом свободных нейтронов. Когда звезда родилась из праматерии, она уже содержала некоторые металлы группы железа. Свободные нейтроны, вступая в реакцию с этими металлами, создают атомы более тяжёлых металлов - вплоть до урана - самого тяжёлого из природных элементов.
Но вот израсходован весь неон в ядре. Ядро начинает сжиматься, и снова сжатие сопровождается ростом температуры. Наступает следующий этап, когда каждые два атома кислорода, соединяясь, порождают атом кремния и атом гелия. Атомы кремния, соединяясь попарно, образуют атомы никеля, которые вскоре превращаются в атомы железа. В ядерные реакции, сопровождающиеся возникновением новых химических элементов, вступают не только нейтроны, но также протоны и атомы гелия. Появляются такие элементы, как сера, алюминий, кальций, аргон, фосфор, хлор, калий. Температура ядра поднимается до полутора миллиардов градусов. По-прежнему продолжается образование более тяжёлых элементов с использованием свободных нейтронов, но на этой стадии из-за большой температуры происходят некоторые новые явления.
Хойл считает ,что при температурах порядка миллиарда градусов возникает мощное гамма-излучение, способное разрушать ядра атомов. Нейтроны и протоны отрываются от ядер, но этот процесс обратимый: частицы вновь соединяются, создавая устойчивые комбинации. Когда температура превысит 1,5 млрд. К, более вероятными становятся процессы распада ядер. Любопытным и неожиданным оказался следующий результат: при дальнейшем увеличении температуры и усилении процессов разрушения и соединения ядра в итоге присоединяют всё больше и больше частиц и, как следствие этого, возникают более тяжёлые химические элементы.
Так, при температурах 2-5 млрд. К рождаются титан, ванадий, хром, железо, кобальт, цинк, и др. Но из всех этих элементов наиболее представлено железо. Как и прежде, при превращении лёгких элементов в тяжёлые вырабатывается энергия, удерживающая звезду от коллапса. Своим внутренним строением звезда теперь напоминает луковицу, каждый слой которой заполнен преимущественно каким-либо одним элементом.
Ой как сложно!
Ой как интересно!!!!!!