Воздействие на воду электромагнитных волн
К.х.н. О.В. Мосин
О воздействии электромагнитных волн низкой интенсивности на воду и водные растворы
Действие электромагнитного излучения миллиметрового диапазона низкой интенсивности (КВЧ-излучение) интенсивно изучается в последние 25 лет во всём мире на различных биологических объектах (от бактерий до тканей и органов человека) и модельных системах, а также используется в практической медицине, что привело к созданию КВЧ-терапии.
Обзор существующих работ по действию миллиметровых волн на биологические объекты свидетельствует о возможности существования механизмов взаимодействия КВЧ волн с клетками растительного или животного происхождения, которые затрагивают фундаментальные аспекты их жизнедеятельности и функционирование клеточных мембран.
Наиболее существенный вывод, сделанный на основе этих экспериментов, состоял в следующем: характер воздействия КВЧ-волн на биологические объекты отличается от обычного теплового воздействия электромагнитных волн и обладает свойствами "информационного" воздействия. Следует заметить, что разделение электромагнитных воздействий на биологические объекты на энергетические (тепловые) и "информационные" впервые обсуждалось в книге А. С. Пресмана. Примерно в это же время (1968г.) была опубликована теоретическая работа Г. Фрёлиха, в которой из общих биофизических соображений была обоснована возможность когерентного возбуждения плазматических мембран клеток или её отдельных участков в диапазоне частот 1011 -1012 Гц, что соответствует ММ -волнам (3×1010 - 3 ×1011 Гц).
Многими исследователями были отмечены положительные воздействия КВЧ-излучения на разных живых объектах и изучены различные физиологические эффекты, вызываемые КВЧ-излучением: ускорение роста и увеличение биомассы, интенсификация процессов фотосинтеза, сопровождающаяся повышением выделения кислорода и содержания в клетках фотосинтезирующих пигментов, увеличение экскреции органических соединений в среду, изменение реакционной способности экзометаболитов, изменение транспорта ионов и др. [1-20].
КВЧ-излучение при терапии острой лучевой болезни усиливает процессы пролиферации клеток, различные энергетические процессы и биосинтез белка. На это указывает более высокое содержание гемоглобина, ретикулоцитов и лейкоцитов по сравнению с контролем. Кроме того, КВЧ-излучение стимулирует образование предшественников эритроцитов и ретикулоцитов и способствует белковому обмену в них. А если воздействовать КВЧ-излучением на головной мозг, то повышается секреция гормонов передней доли гипофиза, оказывающих стимулирующее влияние на эритропоэз и синтез гемоглобина. При действии КВЧ-излучением на почки, половые железы и кору надпочечников также происходит увеличение количества гемоглобина и ретикулоцитов. Однако установлено, что КВЧ-излучение катастрофически снижает количественные показатели лейкоцитов. Общее количество лейкоцитов в контрольной группе в течение всего эксперимента было на 69-72% меньше, чем у необлучённых животных. Основная причина катастрофического опустошения костного мозга, происходящего в самые ранние сроки после облучения, состоит в резком торможении процессов клеточного деления.
Эффекты КВЧ-излучения связаны с:
синтезом АТФ (в клетках зелёного листа);
синтезом биологически активных веществ (в сине -зелёных водорослях);
изменением метаболизма микроорганизмов;
синтезом биологически активных веществ иммуно -компетентными клетками;
повышением урожайности сельскохозяйственных культур (предпосевная обработка семян);
резонансными частотами на графике зависимости "биологический эффект - длина волны миллиметрового излучения ".
С 18 по 20 июня 2002 г. в Киеве проходила 22-я Международная научнопрактическая конференция “Проблемы Электроники”, на которой были представлены доклады учёных по взаимодействию КВЧ-излучения с биообъектами, а также успехи, достигнутые в этой области.
Особенно следует отметить работы группы известных украинских ученых под руководством профессора лаборатории молекулярной фотоэлектроники Института физики Украины М.В. Курика и профессора кафедры физической и биомедицинской электроники Национального технического университета Украины П. П. Лошицкого [21, 22]. Эти работы проводились совместно рядом ведущих научных организаций Киева - политехнический институт (кафедра физической и биомедицинской электроники), национальный институт физики, научно-исследовательский институт биохимии и онкологии, институт экологии человека Киевской Академии наук и др.
В докладах профессоров М.М. Курика и П.П. Лошицкого “Механизмы воздействия электромагнитных волн низкой интенсивности на воду и водные растворы” были подведены итоги работ по исследованию свойств воды при воздействии электромагнитного излучения КВЧ-диапазона (ЭМИ КВЧ).
Хотя исследователи и уделяют основное внимание воздействию миллиметровых волн (КВЧ) на водную среду, но они подчеркивают, что все рассуждения справедливы и для других типов воздействий низкой интенсивности, в том числе и излучение более низких частот, и механическое воздействие (например, ультразвук) и др. [22]
Тот факт, что во всех живых веществах процент содержания воды очень высок, и определил направление поиска первичных механизмов взаимодействия ЭМИ КВЧ с биологическими объектами. Однако, поскольку последние представляют высокоорганизованные структуры, то это может привести к определенным сложностям при выявлении механизмов воздействия на них излучений, поскольку высокая организованность системы значительно усложняет картину ее реакции на внешнее воздействие.
Механизм действия КВЧ-излучения
Известно, что квант энергии КВЧ-излучения имеет очень малую величину по сравнению с тепловой энергией частиц той среды (в данном случае это вода), на которую это излучение воздействует:
где kT0 – тепловая энергия частиц среды (молекул воды), здесь k=1,38·10-23 Дж/К –
постоянная Больцмана, T0 – абсолютная температура среды;
hν есть энергия кванта электромагнитного излучения, здесь h=6,62·10-34 Дж·с –
постоянная Планка, а ν – частота излучения.
Длина волны КВЧ-излучения составляет миллиметры. Следовательно, теоретически, резонансное воздействие, должно происходить на надклеточном уровне. Глубина проникновения в биоткани, характеризующая степень поглощения КВЧ-излучения веществом составляет всего 300-500 мкм.
Таким образом, проблема КВЧ-воздействия на живые организмы является частью общей проблемы воздействия на них слабых внешних факторов разной физической природы, таких как электромагнитные волны, радиоволны и др. Метод КВЧ-излучения находит широкое применение в медицине.
Однако, что применяемое в КВЧтерапии (или МРТ) излучение имеет крайне низкую интенсивность, и учитывая малое значение hν, можно заключить, что влияние КВЧ излучения в этом случае будет "невидимо" на фоне тепловых факторов. Данный аргумент долгое время являлся основным у противников КВЧ-терапии. Однако результаты медицинской практики и биологических исследований свидетельствуют об обратном: несмотря на чрезвычайно малые значения мощности, ЭМИ КВЧ оказывает как правило, положительное влияние на биологические объекты, в том числе и на человека. Значит, в них существуют какие-то специальные способы накопления энергии КВЧ. Что это за механизмы? Какова их роль? Ответы на эти вопросы пытались дать многие ученые как у нас, так и за рубежом.
Одним из первых в бывшем Советском Союзе это попытался сделать профессор института физики Украины М.В. Курик, предсказавший, что сложные биологические системы придают мембранам клеток определенные свойства колебательных систем, которые могут возбуждаться именно в диапазоне волн КВЧ [21]. Это позволяет накапливать КВЧ-энергию и передавать ее внутри системы. Эта идея была развита московскими учеными под руководством академика Н.Д.Девяткова. Ими была выдвинута гипотеза электроакустических колебаний биологических мембран, которые "подпитываются" за счет метаболических процессов и определенным образом перераспределяются внутри организма. При этом время релаксации химических структур, возникающие при КВЧ-воздействии, составляет 10-11–10-12 с.
В общих чертах, биологическое действие электромагнитных излучений оптического и микроволнового диапазонов не имеет принципиальных отличий. Считается, что в основе эффекта лежат структурно-функциональные изменения мембранных образований клеток и внутриклеточных органелл, которые являются мишенями резонансного колебания электромагнитного поля. В результате такого взаимодействия создается физико-химическая основа для изменения процессов метаболизма, связанного с переносов протонов и электронов в клеточных мембранах, а уже на этой основе возникают последовательные неспецифические реакции клетки и организма в целом. Различия существуют лишь в биофизических тонкостях взаимодействия электромагнитных полей и биотканей.
Была даже высказана интересная идея, что эти миллиметровые колебания возникли в процессе эволюции живой клетки и являются одним из главных механизмов поддержания процессов жизнедеятельности. Клетка с клеткой "разговаривает" на языке колебаний именно в миллиметровом диапазоне длин волн. Поэтому они так важны для всего живого.
Сейчас использование КВЧ-излучения в терапии и профилактике целого ряда заболеваний человека является одним из активно развивающихся направлений современной клинической медицины. Электромагнитные волны миллиметрового диапазона успешно применяются для лечения болезней органов кровообращения, дыхания, пищеварения, мочеполовой, нервной и других систем. Были получены первые обнадеживающие результаты по ослаблению с помощью предварительного воздействия миллиметровых волн последствий рентгеновского облучения на костный мозг, параметры эритроцитов крови, перекисное окисление липидов и др.
Во всех аппаратах, генерирующих КВЧ-излучение используется КВЧ-излучение низкой интенсивности (малой мощности), не вызывающие нагревание тканей, при воздействии.
Отсутствие тепловых эффектов, при проведении КВЧ-терапии снимает целый ряд ограничений, свойственных, например, большинство физиотерапевтических аппаратов: строгие противопоказания при наличии злокачественных новообразований, доброкачественных опухолей, некоторых воспалительных заболеваний, беременности и т.п.
-Стандартный вариант КВЧ-терапии использует стандартные частоты: 42,25 ГГц (7,1 мм); 53,57 ГГц (5,6 мм); 61,22 ГГц (4,9 мм), резонансно влияющие на общие для различных биологических объектов структуры (белки-ферменты, клеточные мембраны и т.д.). В результате активизируются имеющиеся резервы организма и ускоряются адаптационные и восстановительные процессы.
-КВЧ-воздействие стимулирует в организме неспецифическую адаптационную резистентность, при этом в организме мобилизуются защитные (иммунный статус) и регуляторные (нейрогуморальный фактор) функции.
-При КВЧ-воздействии меняются физико-химические свойства крови и липидный состав биологических мембран.
-Специфика КВЧ-воздействия проявляется на уровне кожного покрова. Примерно 80% испытуемых испытывают определённые ощущения (сенсорная индикация): давление, покалывание, прикосновение, жжение, редко – тепло, холод.
-КВЧ-воздействие вызывает частотно-зависимые эффекты: возникновение резонансных колебаний в бислойных липидных мембранах клетки и интерференцию на поверхности кожи первичной и вторичных волн и различные биофизические эффекты.
КВЧ-излучение и кластерная система воды
Первичной мишенью любого излучения является вода. То, что вода играет существенную роль в процессе взаимодействия электромагнитных колебаний с биологическими объектами, известно давно. Например, экспериментально было обнаружено, что действие излучений сверхи крайне высоких частот стимулирует возникновение в воде перекиси водорода Н2О2. А это значит, что в ней должны присутствовать в достаточном количестве радикалы ОН–. Тот же факт наличия Н2О2 наблюдается и при воздействии на воду радиационного излучения, которое хотя и имеет электромагнитную природу, но является более жестким (квант его имеет более высокую энергию), чем ЭМИ КВЧ.
Необходимо заметить, что вода представляет собой не совсем обычный объект. Вода - это ассоциированная жидкость с большой диэлектрической проницаемостью и большим дипольным моментом у молекул. Последнее её свойство и приводит к самоорганизованности воды.
Результаты целого ряда исследований можно объяснить, исходя из кластерно-фрактальной модели, которая рассматривает воду как смесь свободных молекул и фрагментов с упорядоченной гексагональной структурой, в вершинах шестиугольников которой находятся радикалы ОН–.
Молекула воды представляет собой маленький диполь, содержащий положительный и отрицательный заряды на полюсах. Так как масса и заряд ядра кислорода больше чем у ядер водорода, то электронное облако стягивается в сторону кислородного ядра. При этом ядра водорода “оголяются”. Таким образом, электронное облако имеет неоднородную плотность. Около ядер водорода имеется недостаток электронной плотности, а на противоположной стороне молекулы, около ядра кислорода, наблюдается избыток электронной плотности. Именно такая структура и определяет полярность молекулы воды. Если соединить прямыми линиями эпицентры положительных и отрицательных зарядов получится объемная геометрическая фигура - правильный тетраэдр.
Строение молекулы воды: А – электронное; Б-пространственное
Благодаря наличию водородных связей каждая молекула воды образует водородную связь с 4-мя соседними молекулами, образуя ажурный сетчатый каркас в молекуле льда. Однако, в жидком состоянии вода – неупорядоченная жидкость; эти водородные связи - спонтанные, короткоживущие, быстро рвутся и образуются вновь. Всё это приводит к неоднородности в структуре воды.
Водородные связи между молекулами воды (на рисунке слева)
Необычные свойства воды известны учёным давно. С давних пор известно, что лёд плавает на поверхности воды, то есть плотность кристаллического льда меньше, чем плотность жидкости. Почти у всех остальных веществ кристалл плотнее жидкой фазы. К тому же и после плавления при повышении температуры плотность воды продолжает увеличиваться и достигает максимума при 4°C. Менее известна аномалия сжимаемости воды: при нагреве от точки плавления вплоть до 40°C она уменьшается, а потом увеличивается. Теплоёмкость воды тоже зависит от температуры немонотонно. Кроме того, при температуре ниже 30°C с увеличением давления от атмосферного до 0,2 ГПа вязкость воды уменьшается, а коэффициент самодиффузии - параметр, который определяет скорость перемещения молекул воды относительно друг друга растёт. Для других жидкостей зависимость обратная, и почти нигде не бывает, чтобы какой-то важный параметр вёл себя не монотонно, т.е. сначала рос, а после прохождения критического значения температуры или давления уменьшался. Возникло предположение, что на самом деле вода — это не единая жидкость, а смесь двух компонентов, которые различаются свойствами, например плотностью и вязкостью, а следовательно, и структурой. Такие идеи стали возникать в конце XIX века, когда накопилось много данных об аномалиях воды.
Первым идею о том, что вода состоит из двух компонентов, высказал Уайтинг в 1884 году. Его авторство цитирует Э.Ф. Фрицман в монографии “Природа воды. Тяжёлая вода”, изданной в 1935 году. В 1891 году В. Ренгтен ввёл представление о двух состояниях воды, которые различаются плотностью. После неё появилось множество работ, в которых воду рассматривали как смесь ассоциатов разного состава (“гидролей”).
Когда в 20-е годы определили структуру льда, оказалось, что молекулы воды в кристаллическом состоянии образуют трёхмерную непрерывную сетку, в которой каждая молекула имеет четырёх ближайших соседей, расположенных в вершинах правильного тетраэдра. В 1933 году Дж. Бернал и П. Фаулер предположили, что подобная сетка существует и в жидкой воде. Поскольку вода плотнее льда, они считали, что молекулы в ней расположены не так, как во льду, то есть подобно атомам кремния в минерале тридимите, а так, как атомы кремния в более плотной модификации кремнезёма — кварце. Увеличение плотности воды при нагревании от 0 до 4°C объяснялось присутствием при низкой температуре тридимитовой компоненты. Таким образом, модель Бернала — Фаулера сохранила элемент двухструктурности, но главное их достижение — идея непрерывной тетраэдрическои сетки. Тогда появился знаменитый афоризм И. Ленгмюра: „Океан — одна большая молекула“. Излишняя конкретизация модели не прибавила сторонников теории единой сетки.
Только в 1951 году Дж. Попл создал модель непрерывной сетки, которая была не так конкретна, как модель Бернала — Фаулера. Попл представлял воду как случайную тетраэдрическую сетку, связи между молекулами в которой искривлены и имеют различную длину. Модель Попла объясняет уплотнение воды при плавлении искривлением связей. Когда в 60–70-е годы появились первые определения структуры льдов II и IX, стало ясно, как искривление связей может приводить к уплотнению структуры. Модель Попла не могла объяснить немонотонность зависимости свойств воды от температуры и давления так хорошо, как модели двух состояний. Поэтому идею двух состояний ещё долго разделяли многие учёные.
Но во второй половине XX века нельзя было так фантазировать о составе и строении „гидролей“, как это делали в начале века. Уже было известно, как устроен лёд и кристаллогидраты, и многое знали про водородную связь. Помимо „континуальных“ моделей (модель Попла), возникли две группы „смешанных“ моделей: кластерные и клатратные. В первой группе вода представала в виде кластеров из молекул, связанных водородными связями, которые плавали в море молекул, в таких связях не участвующих. Модели второй группы рассматривали воду как непрерывную сетку (обычно в этом контексте называемую каркасом) водородных связей, которая содержит пустоты; в них размещаются молекулы, не образующие связей с молекулами каркаса. Нетрудно было подобрать такие свойства и концентрации двух микрофаз кластерных моделей или свойства каркаса и степень заполнения его пустот клатратных моделей, чтобы объяснить все свойства воды, в том числе и знаменитые аномалии.
Среди кластерных моделей наиболее яркой оказалась модель Г. Немети и Х. Шераги: предложенные ими картинки, изображающие кластеры связанных молекул, которые плавают в море несвязанных молекул, вошли во множество монографий.
Первую модель клатратного типа в 1946 году предложил О.Я. Самойлов: в воде сохраняется подобная гексагональному льду сетка водородных связей, полости которой частично заполнены мономерными молекулами. Л. Полинг в 1959 году создал другой вариант, предположив, что основой структуры может служить сетка связей, присущая некоторым кристаллогидратам.
В течение второй половины 60-х годов и начала 70-х наблюдается сближение всех этих взглядов. Появлялись варианты кластерных моделей, в которых в обеих микрофазах молекулы соединены водородными связями. Сторонники клатратных моделей стали допускать образование водородных связей между пустотными и каркасными молекулами. То есть фактически авторы этих моделей рассматривают воду как непрерывную сетку водородных связей. И речь идёт о том, насколько неоднородна эта сетка (например, по плотности). Представлениям о воде как о водородно-связанных кластерах, плавающих в море лишённых связей молекул воды, был положен конец в начале восьмидесятых годов, когда Г. Стэнли применил к модели воды теорию перколяции, описывающую фазовые переходы воды.
Кластер из молекул воды (слева)
В 1999 г. известный российский исследователь воды С.В. Зенин защитил в Институте медико-биологических проблем РАН докторскую диссертацию, посвященную кластерной теории, которая явилась существенным этапом в продвижении этого направления исследований, сложность которых усиливается тем, что они находятся на стыке трех наук: физики, химии и биологии. Им на основании данных, полученных тремя физико-химическими методами: рефрактометрии (С.В. Зенин, Б.В. Тяглов, 1994), высокоэффективной жидкостной хроматографии (С.В. Зенин с соавт., 1998) и протонного магнитного резонанса (С.В. Зенин, 1993) построена и доказана геометрическая модель основного стабильного структурного образования из молекул воды (структурированная вода), а затем (С.В. Зенин, 2004) получено изображение с помощью контрастно-фазового микроскопа этих структур.
Сейчас наукой доказано, что особенности физических свойств воды и многочисленные короткоживущие водородные связи между соседними атомами водорода и кислорода в молекуле воды создают благоприятные возможности для образования особых структур-ассоциатов (кластеров), воспринимающих, хранящих и передающих самую различную информацию.
Структурной единицей такой воды является кластер, состоящий из клатратов, природа которых обусловлена дальними кулоновскими силами. В структуре кластров закодирована информация о взаимодействиях, имевших место с данными молекулами воды. В водных кластерах за счёт взаимодействия между ковалентными и водородными связями между атомами кислорода и атомами водорода может происходить миграция протона (Н+) по эстафетному механизму, приводящие к делокализации протона в пределах кластера.
Вода, состоящая из множества кластеров различных типов, образует иерархическую пространственную жидкокристаллическую структуру, которая может воспринимать и хранить огромные объемы информации.
На рисунке (В.Л. Воейков) в качестве примера приведены схемы нескольких простейших кластерных структур.
Некоторые возможные структуры кластеров воды
Переносчиками информации могут быть физические поля самой различной природы. Так установлена возможность дистанционного информационного взаимодействия жидкокристаллической структуры воды с объектами различной природы при помощи электромагнитных, акустических и других полей. Воздействующим объектом может быть и человек.
Вода является источником сверхслабого и слабого переменного электромагнитного излучения. Наименее хаотичное электромагнитное излучение создаёт структурированная вода. В таком случае может произойти индукция соответствующего электромагнитного поля, изменяющего структурно-информационные характеристики биологических объектов.
Поскольку электромагнитное излучение диапазона КВЧ сильно поглощается водой, а живые объекты содержат очень много воды, то основной эффект будет излучения должен наблюдаться вблизи той границы, на которую падает излучение, и по мере удаления от нее резко ослабевать. Однако, эксперименты с раствором белка этого не подтвердили. Исследователи обнаружили, что результат КВЧ-воздействия не зависит от глубины, или от расстояния до границы.
Например, работах М.В. Курика, Н.Д. Девяткова, В.И. Петросяна и др. изучались резонансные свойства воды в диапазоне миллиметровых волн. Для этого водная среда подвергалась воздействию электромагнитного излучения в широком диапазоне частот (от 4 до 100 ГГц), а ее реакция наблюдалась в диапазоне дециметровых волн с частотой около 1 ГГц (1ГГц=109 Гц). В диапазоне 1 ГГц регистрировалось собственное излучение воды.
Одним из результатов этих исследований явилось наличие у воды резонансов на частотах 50,8 и 51,3 ГГц, т.е. при действии ЭМИ КВЧ с такими частотами наблюдалось резкое увеличение мощности собственного излучения в диапазоне 1 ГГц. Указанные значения частот хорошо согласуются с теоретическими расчетами, если исходить из гексагональной структуры воды. Более подробно с данной работой можно познакомиться в журнале “Радиотехника” № 9 за 1996 г.
Учёные приводят еще одно подтверждение кластерной структуры воды - структура воды является своего рода матрицей, при образовании глобулярных белков. Матрица эта напоминает как бы удлиненную "ванну", вдоль оси которой образуются диссоциированные элементы Н+ и ОН–.
Наличие у воды кластерной структуры позволяет предположить, что при ее разрушении возникнут диссоциированные элементы Н+ и ОН–. Кроме того, идет постоянный обмен между двумя фазами воды: указанные элементы образуют молекулу и переходят в свободную воду, а молекулы свободной воды – в кластеры.
Другое очень интересное свойство воды было замечено учёными – что рН изменяется, если ее перемешать, например, переливать из одного сосуда в другой. А затем после достаточно продолжительного времени, после того, как вода отстоится рН принимает прежнее значение. Если принять во внимание кластерную организацию воды, то такое изменение рН становится понятным. Пока вода находится в устоявшемся состоянии, рН имеет одно значение, обусловленное внешними условиями. После перемешивания, или переливания, кластерная структура нарушается, и рН принимает другое значение. После "отстаивания" кластерная структура восстанавливается, и рН возвращается к прежнему значению.
Исходя из всего сказанного выше, при изучении воздействия ЭМИ КВЧ на биологические объекты и выявлении первичных механизмов этого воздействия необходимо учитывать кластерную структуру воды. На фазовой границе (раздел между водой и газом или водой и твердым телом или, например живой тканью) кластеры выстраиваются вдоль соответствующей границы и объединяются в своем движении. Эта структура имеет большой дипольный момент, а значит должна как реагировать на внешнее электромагнитное поле, так и сама являться источником электромагнитного излучения определенной частоты при тепловом движении.
Собственные излучения кластерной системы воды
Этому вопросу был посвящен отдельный доклад, опубликованный в журнале “Электроника и связь” №15 за 2002 г., целью которого явилось теоретическое и экспериментальное исследование собственных излучений кластерной системы воды.
Вода, которая является основой составляющих большинства живых биологических объектов и определяющая функциональные свойства белковых систем имеет целый ряд физико-химических свойств, которые не удается теоретически проанализировать до настоящего времени. Недостаточное теоретическое и экспериментальное изучение свойств воды приводит к тому, что многие биологические и биофизические эффекты не нашли своего объяснения и применения.
Молекулы воды обладают большим дипольным моментом, который приводит к тому, что они в жидком состоянии взаимодействуют друг с другом, образуя связанные структуры. Эти структуры могут обладать возможностью излучать электромагнитные волны при своем функционировании.
Некоторыми исследователями вода рассматривается как лазер на свободных электрических диполях, что приводит к появлению целого спектра излучений в инфракрасной области [1]. Учитывая, что молекулы воды образуют связанные структуры, следует ожидать, что основной вклад в возможные излучения должны давать не свободные электрические диполи, а связанные.
На рисунке (Г.Г. Маленков) показано пространственное расположение молекул, участвующих в бифуркатных связях жидкой воды.
Молекулы участвующие в бифукартных связях в жидкой воде.
Эти рисунки очень напоминают голографические структуры. А, если это так, то вот они – приемные антенны, преобразующие поступающую информацию в структуру жидких и твердых кристаллов воды. Конечно, это лишь одна из возможных гипотез.
Учитывая, что вода представляет собой кластерную систему, то есть, является глубоко ассоциированной жидкостью, то ее свойства аналогичны свойствам полимеров имеющих высокую текучесть.
Кластеры воды на границах раздела фаз (жидкость-воздух) выстраиваются в определенном порядке, при этом все кластеры колеблются с одинаковой частотой, приобретая одну общую частоту. При таком движении кластеров, учитывая, что входящие в кластер молекулы воды являются полярными, то есть, имеют большой дипольный момент, следует ожидать появления электромагнитного излучения. Это излучение отличается от излучения свободных диполей, так как диполи являются связанными и колеблются совместно в кластерной структуре [23]. Частота колебаний кластеров воды и соответственно, частота электромагнитных колебаний может быть определена по следующей формуле:
где a - поверхностное натяжение воды при заданной температуре;
М - масса кластера.
где V - объем кластера.
Объем кластера определяется с учетом размеров фрактальной замкнутой структуры кластера или по аналогии с размерами домена белка.
При комнатной температуре 18°С частота колебаний кластера f равна 6,79·109 Гц, то есть длина волны в свободном пространстве должно составлять λ = 14,18 мм.
Для экспериментальной проверки наличия подобных колебаний кластеров воды учёные детектировали излучения воды с помощью биологических объектов – семян пшеницы.
На рисунке представлена зависимость биологической активности детектора от высоты размещения препятствия. Данная структура представляет собой своеобразный интерферометр, с помощью которого определяется длина волны, излучаемой поверхностью. Под биологической активностью принята длина корешков и проростков прорастающих зерен.
Каждая точка приведенного графика представляет интервал времени, который длился 10 дней в одинаковых условиях.
Рис. справа - Зависимость биологической активности детектора от высоты размещения препятствия.
Для проведения исследования над кюветой с водой помещались зерна растения, которые и являлись биологическими детекторами излучения, отраженного от малого препятствия, помещенного над поверхностью жидкости. В качестве препятствия использовалась узкая деревянная пластинка. Биологические детекторы испытывают воздействие стоячей волны, образующейся между поверхностью жидкости и препятствием. Изменяя расстояние препятствия над поверхностью жидкости, получаем различные эффекты воздействия на биодетекторы.
На рисунке ниже приведены частотная зависимость температуры излучения поверхности воды.
Рис. слева - Кривая 1 - шумовая температура свободного пространства, а кривая 2 - шумовая температура излучения поверхности воды.
Исследователи пришли к выводу, что собственное излучение кластерной системы воды практически совпадает с приведенными теоретическими оценками. При этом данные колебания кластерной системы не являются обычными капиллярными волнами диапазон частот, которых лежит не выше 1 МГц [3].
Поскольку вода является самоорганизованной структурой и содержит как упорядоченные в кластеры элементы, так и свободные молекулы, то по мнению исследователей, при воздействии внешнего электромагнитного излучения будет происходить следующее. При сближении молекул воды (расстояние изменяется от R0 до R1) энергия взаимодействия изменяется на большую величину, чем при их взаимном удалении (расстояние изменяется от R0 до R2). Но, поскольку молекулы воды имеют большой дипольный момент, то в случае внешнего электромагнитного поля они будут совершать колебательные движения (например, от R1 до R2). При этом в силу приведенной зависимости приложенное электромагнитное поле будет больше способствовать притяжению молекул и тем самым организованности системы в целом, т.е. образованию гексагональной структуры.
При наличии же примесей в водной среде они покрываются гидратной оболочкой таким образом, что общая энергия системы стремится принять минимальное значение. И если общий дипольный момент гексагональной структуры равен нулю, то в присутствие примесей гексагональная структура вблизи них нарушается таким образом, чтобы система приняла минимальное значение, в ряде случаев шестиугольники преобразуются в пятиугольники, и гидратная оболочка имеет форму близкую к шару. Примеси (например, ионы Na+) могут стабилизировать структуру, делать ее более устойчивой к разрушению.
Самоорганизованная система воды при воздействии КВЧ-излучения не будет перемещаться как единое целое, но каждый элемент гексагональной, а в случае примесей локально и другого вида, структуры будет смещаться, т.е. будет происходить искажение геометрии структуры, т.е. возникать напряжения. Такое свойство воды очень напоминает полимеры. Но полимерные структуры обладают большими временами релаксации, которые составляют не 10-11–10-12 с, а минуты и больше. Поэтому энергия квантов электромагнитного излучения, переходя во внутреннюю энергию организованной водной структуры в результате её искажений, будет накапливаться ею, пока не достигнет энергии водородной связи, которая в 500–1000 раз больше энергии электромагнитного поля. При достижении этой величины происходит разрыв водородной связи и структура разрушается.
Это можно сравнить со снежной лавиной, когда происходит постепенное, медленное накапливание массы, а затем стремительный обвал. В случае с водой происходит разрыв не только слабой связи между кластерами, но и более сильных связей. В результате этого разрыва могут образовываться Н+, ОН–, и гидратированный электрон е–. Голубой цвет чистой воды обязан наличию именно этих электронов, а не только рассеянию естественного света. Исследователями впервые экспериментально было обнаружено излучение гидратированных электронов в дистиллированной воде. А вот в случае воды с примесями этого эффекта не наблюдается. Объясняется это тем, что в данном случае гидратированные электроны участвуют в химических реакциях.
Таким образом, при воздействии электромагнитного излучения с водой происходит накапливание энергии в кластерной структуре до некоторого критического значения, затем происходит разрыв связей как между кластерами, так и других, происходит лавинообразное освобождение энергии, которая может затем трансформироваться в другие типы. В случае биологических систем это может служить первичным механизмом в сложной цепи их взаимодействия с электромагнитным излучением.
Таким образом, биологический (биофизический) механизм воздействия низкоинтенсивного электромагнитного излучения в ММ -диапазоне длин волн на биологические объекты носит многофакторный (комплексный) характер.
В заключении следует заметить, что хотя данные исследования и начались с вопроса о взаимодействии биообъектов и ЭМИ КВЧ, внешним фактором может быть и другое излучение, и механическое воздействие (например, ультразвук), также приводящее к искажению геометрии гексагональной структуры воды и аккумулированию в ней энергии такого воздействия.
Литература:
1. Девятков Н.Д., Голант М.В., Бецкий О.В. Особенности медико-биологического применения миллиметровых волн. - М.: ИРЭ РАН, 1994.
2.Тамбиев А.Х., Кирикова Н.Н., Яковлева М.Н., Мантрова Г.М., Гусев М.В. Стимуляция роста сине-зеленых водорослей при действии
электромагнитного излучения ММ диапазона низкой интенсивности. - Применение ММ излучения низкой интенсивности в биологии и медици-не. - М.: ИРЭ АН СССР, 1986.
3.Рубин А.Б., Лукашев Е.П., Чаморовский С.К., Кононенко, А.А., Кузнецов А.Н., Яременко Ю.Г. Влияние ЭМИ КВЧ на перенос зарядов в
светочувствительных пигмент-белковых комплексах по данным импульсной абсорбционной спектроскопии милли - и микросекундного временного разрешения. - Миллиметровые волны в медицине. - М.: ИРЭ АН СССР, 1991, т. 2.
4.Тарусов Б.Н. Первичные процессы лучевого поражения. - М.: Госатомиздат, 1962.
5.Маринов Б.С., Чайлахян Л.М. Регуляция активности супероксиддисмутазы сверхвысокочастотным излучением. Механизм действия СВЧ. -
ДАН РФ, 1997, т. 356, № 6.
6.Хургин Ю.И., Бецкий О.В., Церевитинова Н.Г., Перепечкина Т.Л. О природе пер-вичной мишени при воздействии низкоинтенсивного
миллиметрового излучения на биологические объекты. - Медико-биологические аспекты милиметрового излучения. - М.: ИРЭ АН СССР, 1987.
7.Шаров В.С., Казаринов К.Д., Андреев В.Е., Путвинский А.В., Бецкий О.В. Ускоре-ние перекисного окисления липидов под действием
электромагнитного излучения миллиметрово-го диапазона. - Биофизика, 1983, т. 28.
8.Бецкий О.В., Путвинский А.В. Биологические эффекты миллиметрового излучения низкой интенсивности. - Изв. вузов МВ и ССО СССР.
Радиоэлектроника, 1986, т. 29, № 4.
9.Полников И.Г., Казаринов К.Д., Шаров В.С., Путвинский А.В., Бецкий О.В. Гидро-динамическая неустойчивость на межфазной границе
при поглощении ММ излучения низкой ин-тенсивности. - Применение миллиметрового излучения низкой интенсивности в биологии и ме-дицине. - М.: ИРЭ АН СССР, 1985.
10.Казаринов К.Д. Биологические эффекты КВЧ-излучения низкой интенсивности. - Итоги науки и техники. Биофизика, 1990, т.27, № 3.
Владимиров Ю.А., Арчаков А.И. Перекисное окисление липидов в биологических мембранах. - М.: Наука, 1972.
Андреев В.Е., Бецкий О.В., Ильина С.А., Казаринов К.Д., Путвинский А.В., Шаров В.С. Ускорение перекисного окисления липидов в
липосомах под действием миллиметрового излучения. - Нетепловые эффекты миллиметрового излучения. - М.: ИРЭ АН СССР, 1981.
11.Полников И.Г., Твердохлеб П.Е., Путвинский А.В., Майрановский С.Г. Ускорение диффузионных процессов и химических реакций
протонизации в водных средах при миллиметро-вом облучении. - Применение миллиметрового излучения низкой интенсивности в биологии и медицине. - М.: ИРЭ АН СССР, 1985.
12.Лебедева А.Ю. Применение электромагнитного излучения миллиметрового диапазона в комплексном лечении заболеваний сердечно-сосудистой
системы. - 11 Межд. симп. "Милли-метровые волны в медицине и биологии". Сб. докл. - М.: ИРЭ РАН, 1997.
13.Родштат И.В. Физиологические аспекты рецепции миллиметровых радиоволн биологическими объектами. - Применение миллиметрового
излучения низкой интенсивности в биологии и медицине", М.: ИРЭ АН СССР, 1985.
14.Мартынюк В.С., Темурьянц Н.А. Роль перекисного окисления липидов и тиол-дисульфидного обмена в механизмах антистрессорного
действия электромагнитного излучения крайне высокой частоты. - Миллиметровые волны в биологии и медицине, 1995, № 5.
15.Поцелуева М.М., Пустовидко А.В., Евтодиенко Ю.В., Храмов Р.Н., Чайлахян Л.М. Образование реактивных форм кислорода в водных
растворах под действием электромагнитного излучения КВЧ-диапазона. - ДАН СССР, 1998, т.359, в. 3.
16.Диденко Н.П., Зеленцов В.Т., Ча В.А. О конформационных изменениях биомолекул при взаимодействии с электромагнитным излучением. - Эффекты нетеплового воздействия миллиметрового излучения на биологические объекты. - М.: ИРЭ АН СССР, 1983.
17.Искин В.Д., Завгородний Ю.В., Яценко Н.М., Силина Л.К., Степула Е.В., Медведовский А.В., Райс Б.Г., Руденко С.В. Биологические эффекты
миллиметровых волн. - Биофизика, 1987. Препринт № 7591-В87.
18.Гапочка Л.Д., Гапочка М.Г., Королев А.Ф., Костиенко, А.И., Сухоруков А.П., Тимошкин И.В. Воздействие электромагнитного излучения
КВЧ и СВЧ диапазонов на жидкую воду. - Вестн. Моск. ун-та. Сер.3. Физика. Астрономия, 1994, т. 35, № 4.
19.Реброва Т.Б. Влияние электромагнитного диапазона на жизнедеятельность микроорганизмов. - Миллиметровые волны в биологии и медицине,
1992, № 1.
20.Уоттерсон Д.Г. Роль воды в функционировании клетки. // Биофизика.: – 1991, вып.1. том 36 - c.5 - 30.
21.Курик М.В. О фрактальности питьевой воды ("живая вода") // Физика сознания и жизнь, космология и астрофизика. 2001, №3, 45-48.
22.www.helpmed.ru/upmenu_story_doc/1164
23.Барабаш Ю.М. Динамика параметров водных систем под действием слабого электромагнитного излучения. -М.: Наука, 285с.
Приливы и отливы, волны убийцы.
Форум Института океанологии.
Тема "Гипотезы, загадки, идеи, озарения"
www.oceanographers.ru/forum/v....php
Вопросы, на которые Лунная теория о приливах, так и не смогла ответить:
1. Почему приливные волны, движутся строго по периметру озер, морей и океанов, а не с востока на запад, вслед за Луной?
2. Почему если на одном берегу моря образуется прилив, то на противоположном берегу моря, обязательно образуется отлив?
3. Почему амплитуда приливной волны, находится в прямой зависимости, от скорости вращения вод, в озерах, морях и океанах?
На все эти вопросы, исчерпывающе отвечает, теория опрокидывающихся водоворотов:
Воды озер, морей и океанов северного полушария вращаются против часовой стрелки, а воды южного полушария вращаются по часовой стрелке образуя гигантские водовороты.
В тоже время существует строгая закономерность, чем быстрее вращаются водовороты, тем выше амплитуда приливной волны.
Средняя скорость вращения вод Каспийского и Черного моря составляет 0, 5 км/час, а средняя высота приливной волны составляет 5 см.
Средняя скорость вращения вод Охотского и Белого моря составляет 2 км/ час, а средняя высота приливной волны составляет 20 см.
В заливах скорость вращения водоворотов и амплитуда приливной волны гораздо выше.
Существующую зависимость высоты приливной волны, от скорости вращения водоворотов, легко объясняет теория опрокидывающихся водоворотов:
Как известно всё, что вращается, в том числе и водовороты, обладают свойством гироскопа (юлы) сохранять вертикальное положение оси в пространстве, независимо от вращения Земли..
Если смотреть на Землю со стороны Солнцa, водовороты вращаясь вместе с Землей опрокидываются два раза в сутки, благодаря чему, водовороты прецессируют, (раскачиваются на 1-2 градусов) и отражают от себя приливную волну по всему периметру моря, два раза в сутки..
Воды Белого моря вращаются против часовой стрелки, образуя огромный водоворот-гироскоп, прецессируя отражающий приливную волну по всему периметру Белого моря.
Аналогичная схема приливов и отливов наблюдается во всех озерах, морях и океанах..
Приливную волну движущуюся по океану, называют солитоном. При столкновении солитона с береговой линией континента, образуются приливы и отливы. При столкновении солитонов, двух соседних водоворотов, образуется волна убийца..
Приливную волну в реке Амазонка создает огромный планетарный водоворот, диаметром в несколько тысяч км, вращающийся между Южной Америкой и Северной Африкой, охватывая и устье реки Амазонка.
Воды Средиземного моря, вращаются против часовой стрелки, образуя приливы высотой 10-15 см. Но в заливе Габес, что у побережья Туниса, высота приливов достигает трех метров, а порой и больше. И это считается одной из загадок природы. Но в тоже время в заливе Габес вращается водоворот, прецессируя отражающий дополнительную приливную волну..
Внутри постоянных океанических и морских водоворотов вращаются небольшие постоянные и непостоянные вихри и водовороты, создаваемые впадающими в бухты реками, очертанием берегов и местными ветрами. И в зависимости от скорости и направления вращения небольших прибрежных водоворотов, зависит календарь, амплитуда и количество приливов и отливов в сутки..
Ширина приливной волны зависит от диаметра водоворота. А высота приливной волны, зависит от скорости вращения водоворота и времени опрокидывания водоворота (за 12часов). Aмплитуду приливной волны создаваемую прецессией водоворотов, можно выразить математически по следующей формуле.
А = v : t
Где: A - амплитуда приливной волны (угол прецессии).
v - скорость вращения водоворота.
t - время опрокидывания водоворота (12часов)..
Водоворотную теорию о приливах легко проверить, по связи высоты приливной волны, со скоростью вращения водоворотов. По высоте приливной волны можно определять местонахождение водоворотов.
Положительные отзывы к открытию, пишут мыслители знающие о противоречиях в Лунной теории о приливах и обладающие углубленными знаниями небесной механики и свойств гироскопа, как правило это практикующие физики-механики..
Открытие опубликовано в Российско-Немецком, научном, рецензируемом журнале “Eastern European Scientific Journal” №3/2015.
Открытие также опубликовано в научном журнале, "Доклады независимых авторов" №33/2015.
Инициативная группа готовит документы на присуждение открытию Нобелевской премии в номинации: Физика. Продолжение Форум МИФИ
mephi.ru/communication/forum...5498/messages/
А что, чтобы превратить гипотезу в открытие достаточно только оформить документы? Где модель, где статистика?