Лёд, который не тает
Читал, что американские ученые создали лед, который не тает, кто у нас в России занимается этим направлением, а то промышленное холодильное оборудование очень дорогое и энергии потребляет многовато. Ученые, создайте дешевый лёд!!
Да, действительно. В настоящее время получены 14 различных структурных модификаций льда с различными свойствами. Среди них есть кристаллические (их большинство) и аморфные модификации, но все они отличаются друг от друга взаимным расположением молекул воды и физическими свойствами (темературой плавления, кристаллизации и др.). Правда, все, кроме обычного льда I, кристаллизующего в гексагональной решетке, образуются в условиях, близких к космическим — при очень низких температурах и высоких давлениях, когда углы водородных связей в молекуле воды изменяются и образуются системы, отличные от гексагональной. Такие условия на Земле не встречаются. Но их можно моделировать в современных лабораториях. Например, при температуре ниже –110 °С водяные пары выпадают на металлической пластине в виде октаэдров и кубиков размером в несколько нанометров — это так называемый кубический лед. Если температура чуть выше –110 °С, а концентрация пара очень мала, на пластине формируется слой исключительно плотного аморфного льда.
Наиболее изученным является лёд I-й природной модификации. Лёд встречается в природе в виде льда (материкового, плавающего, подземного и т.д.), а также в виде снега, инея и т.д. Он распространён во всех областях обитания человека. Собираясь в огромных количествах, снег и лед образуют особые структуры с принципиально иными, нежели у отдельных кристаллов или снежинок, свойствами. Ледники, ледяные покровы, вечная мерзлота, сезонный снежный покров существенно влияют на климат больших регионов и планеты в целом: даже те, кто никогда не видел снега, чувствуют на себе дыхание его масс, скопившихся на полюсах Земли, например, в виде многолетних колебаний уровня Мирового океана. Лед имеет столь большое значение для облика нашей планеты и комфортного обитания на ней живых существ, что ученые отвели для него особую среду — криосферу, которая простирает свои владения высоко в атмосферу и глубоко в земную кору.
Табл. 1. — Некоторые свойства льда I
Свойство
Значение
Примечание
Теплоемкость, кал/(г··°C) Теплота таяния, кал/г Теплота парообразования, кал/г
0,51 (0°C) 79,69 677
Сильно уменьшается с понижением температуры
Коэффициент термического расширения, 1/°C
9,1·10—5 (0°C)
Теплопроводность, кал/(см сек··°C)
4,99·10—3
Показатель преломления: для обыкновенного луча для необыкновенного луча
1,309 (—3°C) 1,3104 (—3°C)
Удельная электрическая проводимость, ом—1·см—1
10—9 (0°C)
Кажущаяся энергия активации 11ккал/моль
Поверхностная электропроводность, ом—1
10—10 (—11°C)
Кажущаяся энергия активации 32ккал/моль
Модуль Юнга, дин/см
9·1010 (—5°C)
Поликристаллич. лёд
Сопротивление, Мн/м2 : раздавливанию разрыву срезу
2,5 1,11 0,57
Поликристаллический лёд Поликристаллический лёд Поликристаллический лёд
Средняя эффективная вязкость, пз
1014
Поликристаллический лёд
Показатель степени степенного закона течения
3
Энергия активации при деформировании и механической релаксации, ккал/моль
11,44—21,3
Линейно растет на 0,0361 ккал/(моль·°C) от 0 до 273,16 К
Примечание. 1 кал/(г°С)=4,186 кджl (kг (К); 1 ом-1см-1=100 сим/м; 1 дин/см=10-3н/м; 1 кал/(см (сек°С)=418,68 вт/(м (К); 1 пз=10-1 н (сек/м2.
Лёд II, III и V-й модификации длительное время сохраняются при атмосферном давлении, если температура не превышает —170°С. При нагревании приблизительно до —150°С лёд превращаются в кубический лёд Ic.
При конденсации паров воды на более холодной подложке образуется аморфный лёд. Обе эти формы льда могут самопроизвольно переходить в гексагональный лёд, причём тем скорее, чем выше температура.
Лёд IV-й модификации является метастабильной фазой льда. Он образуется гораздо легче и особенно стабилен, если давлению подвергается тяжёлая вода.
Кривая плавления льда V и VII исследована до давления 20 Гн/м2 (200 тыс. кгс/см2). При этом давлении лёд VII плавится при температуре 400°С.
Лёд VIII является низкотемпературной упорядоченной формой льда VII.
Лёд IX — метастабильная фаза, возникающая при переохлаждении льда III и по существу представляющая собой его низкотемпературную форму.
Табл. 3. — Некоторые данные о структурах модификаций льда
Модифи
кация
Сингония
Фёдоровская группа
Длины водородных связей,
Углы О—О—О в тетраэдрах
I
Ic
II
III
V
VI
VII
VIII
IX
Гексагональная
Кубическая
Тригональная
Тетрагональная
Моноклинная
Тетрагональная
Кубическая
Кубическая
Тетрагональная
P63/mmc
F43m
R3
P41212
A2/a
P42/nmc
Im3m
Im3m
P41212
2,76
2,76
2,75—2,84
2,76—2,8
2,76—2,87
2,79—2,82
2,86
2,86
2,76—2,8
109,5
109,5
80—128
87—141
84—135
76—128
109,5
109,5
87—141
Примечание. 1 A=10-10 м.
Две последние модификации льда — XIII и XIV — открыли ученые из Оксфорда совсем недавно, в 2006 году. Предположение о том, что должны существовать кристаллы льда с моноклинной и ромбической решетками, было трудно подтвердить: вязкость воды при температуре –160°С очень высока, и собраться вместе молекулам чистой переохлажденной воды в таком количестве, чтобы образовался зародыш кристалла, трудно. Этого удалось достичь с помощью катализатора — соляной кислоты, которая повысила подвижность молекул воды при низких температурах. В земной природе подобные модификации льда образовываться не могут, но они могут встречаться на замерзших спутниках других планет.
К.х.н. О.В. Мосин
Очень познавательно!👍👍👍