admin

Какой лёд лучше?

При замораживании воды в пластиковых бутылках заметно, что сначала появляется прозрачный лёд, как слеза, а в центре бутылки, в последнюю очередь замерзания, образуется мутный, непрозрачный лёд. Какие свойства этих двух видов льда и какой предпочтительнее употреблять после размораживания?


Ответ:

Замораживать воду лучше всего в посуде, изготовленной из прочного стекла. Для этого подойдёт любая ёмкость – банка, кастрюля и т.д. и т.п. А ответ на ваш вопрос почему лёд кристаллизуется таким образом заключается в том, что превращение жидкости в кристалл происходит в первую очередь на центрах кристаллизации; примесях и неоднородностях — частичках пыли, пузырьках воздуха, мельчайших царапинах на стенках сосуда. Чистая вода центров кристаллизации практически лишена, поэтому она может переохлаждаться, и довольно сильно, оставаясь жидкой, но мельчайшие пузырьки воздуха вода всегда содержит. Они то и являются причиной наблюдаемого эффекта.

Есть даже такая гипотеза, что в структуре льда остаются многочисленные поры и промежутки, заполненные воздухом. Пузырьки воздуха вмерзают в лёд, и такая „губка“ становится значительно легче воды. Но даже лёд без микроскопических пор и трещин имеет плотность 0,9168 г/см 3 при 0°С, а вода при той же температуре — 0,9984 г/см 3.

Лёд – это самая загадочная и необычная после воды субстанция. Сейчас известно 14 модификаций льда. Правда, все, кроме привычного нам льда, кристаллизующего в гексагональной сингонии и обозначающегося как лёд I , образуются в условиях экзотических — при очень низких температурах (порядка -110150 0С) и высоких давлениях, когда углы водородных связей в молекуле воды изменяются и образуются системы, отличные от гексагональной. Такие условия напоминают космические и не встречаются на Земле. Например, при температуре ниже –110 °С водяные пары выпадают на металлической пластине в виде октаэдров и кубиков размером в несколько нанометров — это так называемый кубический лед. Если температура чуть выше –110 °С, а концентрация пара очень мала, на пластине формируется слой исключительно плотного аморфного льда. Эта форма льда в свою очередь может самопроизвольно переходить в гексагональный лёд, причём тем быстрее, чем выше температура.

Рис. Диаграмма состояния кристаллических льдов

Две самых последние модификации льда — XIII и XIV — открыли ученые из Оксфорда совсем недавно, в 2006 году. Предположение о том, что должны существовать кристаллы льда с моноклинной и ромбической решетками, было трудно подтвердить: вязкость воды при температуре –160°С очень высока, и собраться вместе молекулам чистой переохлажденной воды в таком количестве, чтобы образовался зародыш кристалла, трудно. Этого удалось достичь с помощью катализатора — соляной кислоты, которая повысила подвижность молекул воды при низких температурах. В земной природе подобные модификации льда образовываться не могут, но они могут встречаться на замерзших спутниках других планет. Более подробно обо всём этом читайте на нашем сайте.

Сами молекулы воды, состоящие из одного атома кислорода и двух атомов водорода, имеют вид шариков с выпуклостями. В кристалле льда они располагаются так, что выпуклости (соответствующие атомам водорода) ориентируются строго по направлению двух соседних молекул. В результате возникает трёхмерная кристаллическая решётка, состоящая из почти идеальных тетраэдров. Каждая молекула в его вершинах окружена четырьмя другими, т.е. имеет координационное число равное 4.

Рис. 1. Кристаллическая решётка льда. Молекулы воды H2O с атомом кислорода (красный шарик) и двумя атомами водорода (синие шарики) в её узлах расположены так, что каждая имеет четырёх „соседок“.

Похожие явления кристаллизации льда на примесях можно наблюдать и в природе. Многие путешественники давно отмечали, что глубокой осенью очень чистые речки и ручьи начинают замерзать со дна. Сквозь слой чистой воды хорошо видно, что водоросли и коряги на дне обрастают рыхлой ледяной шубой. В какой-то момент этот донный лёд всплывает, и поверхность воды мгновенно оказывается скованной ледяной коркой.

К подобным сообщениям всегда относились довольно скептически. Температура верхних слоёв воды ниже, чем глубинных, и замерзание вроде бы должно начинаться с поверхности. Однако чистая вода замерзает неохотно, и лёд в первую очередь образуется там, где имеются центры кристаллизации - взвесь ила и твёрдая поверхность, — возле дна.

Кристалл льда стремится вырасти как можно более правильным — это „выгодно“ с точки зрения его внутренней энергии. А любые примеси искажают форму решётки. Поэтому растущий кристалл вытесняет любые посторонние атомы и молекулы, стараясь строить идеальную решетку, пока это возможно. И только когда примесям деваться уже некуда, кристалл льда начинает встраивать их в свою структуру или оставляет в виде капсул концентрированной жидкостью. Поэтому морской лёд пресный, а даже самые грязные лужи покрываются прозрачным и чистым льдом.

Водопроводная вода содержит примерно сто частей примесей на миллион частей воды (в основном это хлор, растворённый для дезинфекции, поваренная соль, которая есть везде, и твёрдые микрочастицы), а также пузырьки расстворённого воздуха. Дистилляцией в обычных лабораторных условиях их количество нетрудно понизить раз в сто, получив воду с чистотой 99,9999%. Если же сосуд с этой водой медленно охлаждать с одной стороны, получится лёд с чистотой уже до шести девяток после запятой. В нём отыщется только одна частица примеси на сто миллионов частиц воды.

В минералогических коллекциях нередко можно видеть, например, прозрачные кристаллы корунда Al2O3, которые заканчиваются рубиновой „шапочкой“. Это растущий кристалл „собрал“ со всего объёма примесь — ионы хрома Cr 3+, которые превращают бесцветный корунд в красный рубин.

Аналогичным образом, и лёд, выжимая примеси из своей кристаллической решётки, становится прозрачным. А снег же, который состоит из микроскопических кристалликов льда, непрозрачен. В чём же причина столь разных оптических свойств одного и того же вещества?

Как это ни странно, причина здесь одна. Лёд практически не поглощает видимый свет. И если бы лёд не был прозрачным, снег не был бы белым. Световые лучи проходят ледяную пластинку насквозь, а в слое снега испытывают многократное отражение и выходят обратно, не потеряв ни одного из компонентов спектра. Но если бы мы могли видеть инфракрасное излучение и ультрафиолет, снег казался бы нам абсолютно чёрным: коэффициент поглощения света в этих областях спектра очень велик.

Кроме того, в воде содержатся мельчайшие пузырьки растворённого в ней воздуха. При замерзании воды они выделяются, как бы “прилипая” к граням кристаллов льда. Чем больше образуется кристалликов льда, тем больше пузырьков воздуха — вот вам и непрозрачный лед. В природе если вода подо льдом движется, воздушные пузырьки собираются вместе, и образуется прозрачный лед.

Прозрачный лёд можно изготовить и в домашних условиях. Для этого нужно использовать очень чистую, хорошо прокипяченную (а еще лучше дистиллированную - она продается в аптеках) воду.

С уважением,

к.х.н. О.В. Мосин